Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we study the problem of inference in high-order structured prediction tasks. In the context of Markov random fields, the goal of a high-order inference task is to maximize a score function on the space of labels, and the score function can be decomposed into sum of unary and high-order potentials. We apply a generative model approach to study the problem of high-order inference, and provide a two-stage convex optimization algorithm for exact label recovery. We also provide a new class of hypergraph structural properties related to hyperedge expansion that drives the success in general high-order inference problems. Finally, we connect the performance of our algorithm and the hyperedge expansion property using a novel hypergraph Cheeger-type inequality.more » « less
-
We develop a novel method to remove injected backdoors in deep learning models. It works by cloning the benign behaviors of a trojaned model to a new model of the same structure. It trains the clone model from scratch on a very small subset of samples and aims to minimize a cloning loss that denotes the differences between the activations of important neurons across the two models. The set of important neurons varies for each input, depending on their magnitude of activations and their impact on the classification result. We theoretically show our method can better recover benign functions of the backdoor model. Meanwhile, we prove our method can be more effective in removing backdoors compared with fine-tuning. Our experiments show that our technique can effectively remove nine different types of backdoors with minor benign accuracy degradation, outperforming the state-of-the-art backdoor removal techniques that are based on fine-tuning, knowledge distillation, and neuron pruning.more » « less
-
Animashree Anandkumar (Ed.)In this paper we propose an algorithm for exact partitioning of high-order models. We define a general class of m-degree Homogeneous Polynomial Models, which subsumes several examples motivated from prior literature. Exact partitioning can be formulated as a tensor optimization problem. We relax this high-order combinatorial problem to a convex conic form problem. To this end, we carefully define the Carathéodory symmetric tensor cone, and show its convexity, and the convexity of its dual cone. This allows us to construct a primal-dual certificate to show that the solution of the convex relaxation is correct (equal to the unobserved true group assignment) and to analyze the statistical upper bound of exact partitioning.more » « less
An official website of the United States government

Full Text Available